skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lozitsky, Vsevolod"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a detailed study of very strong magnetic fields in the NOAA Active Region (AR) 12673, which was the most flare productive AR in solar cycle 24. It produced four X-class flares including the X9.3 flare on 2017 September 6 and the X8.2 limb event on September 10. Our analysis is based on direct measurements of full Zeeman splitting of the Fei1564.85 nm line using all Stokes I, Q, U, and V profiles. This approach allowed us to obtain reliable estimates of the magnitude of magnetic fields independent of the filling factor and atmosphere models. Thus, the strongest fields up to 5.5 kG were found in a light bridge (LB) of a spot, while in the dark umbra magnetic fields did not exceed 4 kG. In the case of the LB, the magnitude of the magnetic field is not related to the underlying continuum intensity, while in the case of umbral fields we observed a well-known anticorrelation between the continuum intensity and the field magnitude. In this study, the LB was cospatial with a polarity inversion line ofδ-sunspot, and we speculate that the 5.5 kG strong horizontal fields may be associated with a compact twisted flux rope at or near the photosphere. A comparison of the depth of the Zeemanπandσcomponents showed that in the LB magnetic fields are, on average, more horizontal than those in the dark umbra. 
    more » « less